If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+2x^2=396
We move all terms to the left:
4x+2x^2-(396)=0
a = 2; b = 4; c = -396;
Δ = b2-4ac
Δ = 42-4·2·(-396)
Δ = 3184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3184}=\sqrt{16*199}=\sqrt{16}*\sqrt{199}=4\sqrt{199}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{199}}{2*2}=\frac{-4-4\sqrt{199}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{199}}{2*2}=\frac{-4+4\sqrt{199}}{4} $
| 29.50=1.50x*15 | | 29.50=1.50x*50 | | 2x^2+3=50 | | 4^3x-6=2^3x-6 | | 9+6a=13(-4) | | 2(x+3)-4(3-2x)=100-4(5x+20) | | 78=3x-24 | | 2(y-9)=14 | | 5b+7|4=8 | | X/3x=12 | | 1=280+0.08y | | 28x^2+51x=0 | | y÷y=280+0.8y^2÷y | | y=280+0.8(0.1y^2) | | 1=920+0.06y | | X²+15x=50 | | x/5+x/10+x/6=1 | | 7x-27=16 | | 1x+0.75=0.5x-0.45 | | 2x+4-4=10 | | 1x+0.75=0.5-0.45 | | (n)(n-1)(n-2)=720 | | 180=30x+50 | | 180=30g+50 | | x-(2x-3)=-6(x^2+x-2) | | 4-2/5c=6 | | 10x=0.0001x= | | 4+(p−2)5=0 | | 3+7t=0 | | 14x+16=2x+16 | | 56x23(x433+3/3/4)=234 | | |2x−3|=9 |